

Content Protection for

eXtended Media

Specification

Introduction and

Common Cryptographic Elements

Intel Corporation

International Business Machines Corporation

Panasonic Corporation

Toshiba Corporation

Revision 0.85 Preliminary Release

September 27, 2010

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page ii 4C Entity, LLC

This page is intentionally left blank.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page iii

Preface

Notice

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING

ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY

PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE. IBM, Intel, Panasonic, and Toshiba disclaim all liability, including liability

for infringement of any proprietary rights, relating to use of information in this specification. No license,

express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Copyright © 2008 – 2010 by International Business Machines Corporation, Intel Corporation, Panasonic

Corporation, and Toshiba Corporation. Third-party brands and names are the property of their respective

owners.

Intellectual Property

Implementation of this specification requires a license from the 4C Entity, LLC.

Contact Information

Please address inquiries, feedback, and licensing requests to the 4C Entity, LLC:

 Licensing inquiries and requests should be addressed to 4C-Services@4CEntity.com.

 Feedback on this specification should be addressed to 4C-Services@4CEntity.com.

The URL for the 4C Entity, LLC web site is http://www.4CEntity.com.

mailto:4C-Services@4CEntity.com
mailto:4C-Services@4CEntity.com
http://www.4centity.com/

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page iv 4C Entity, LLC

This page is intentionally left blank.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page v

Table of Contents

Notice .. iii

Intellectual Property .. iii

Contact Information .. iii

1. INTRODUCTION .. 1-1

1.1 Purpose and Scope ... 1-1

1.2 Overview ... 1-1

1.3 Organization of this Document ... 1-2

1.4 References .. 1-3

1.5 Future Directions ... 1-3

1.6 Notation .. 1-3
1.6.1 Numerical Values .. 1-3
1.6.2 Bit and Byte Ordering .. 1-3
1.6.3 Operations .. 1-3

1.7 Abbreviations and Acronyms ... 1-4

2. CPXM COMMON CRYPTOGRAPHIC FUNCTIONS 2-1

2.1 AES Block Cipher Algorithm ... 2-1
2.1.1 AES Block Cipher in Electronic Codebook (ECB) Mode ... 2-1
2.1.2 AES Block Cipher in Cipher Block Chaining (CBC) Mode .. 2-1

2.2 AES Hash Function ... 2-2

2.3 AES One-way Function ... 2-3

2.4 Random Number Generators ... 2-4
2.4.1 AES Random Number Generator .. 2-4
2.4.2 AES Pseudo-random Number Generator ... 2-5

3. CPXM COMMON CRYPTOGRAPHIC KEY MANAGEMENT 3-1

3.1 Device Keys .. 3-2

3.2 Media Key Block (MKB)... 3-2
3.2.1 Subset-Difference Tree Related Definitions .. 3-3
3.2.2 Calculation of Subsidiary Device Keys and Processing Keys ... 3-3
3.2.3 Storing Device Keys .. 3-3

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page vi 4C Entity, LLC

3.2.4 Calculation of Media Key and Media Key Precursor .. 3-4
3.2.5 Media Key Block Format .. 3-6

3.2.5.1 Type and Version Record .. 3-6
3.2.5.2 Verify Media Key Record .. 3-7
3.2.5.3 Explicit Subset-Difference Record .. 3-8
3.2.5.4 Subset-Difference Index Record .. 3-9
3.2.5.5 Media Key Data Record... 3-10
3.2.5.6 End of Media Key Block Record ... 3-11

3.2.6 Read/Write Media Key Blocks .. 3-12

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page vii

List of Figures

Figure 1-1 – CPXM Illustrative Example ... 1-2

Figure 2-1 – AES Hash Function .. 2-2

Figure 2-2 – AES One-way Function ... 2-3

Figure 2-3 – AES Random Number Generator .. 2-4

Figure 2-4 – AES Pseudo-random Number Generator ... 2-5

Figure 3-1 – Common CPXM Cryptographic Key Management Procedure .. 3-1

Figure 3-2 – Calculation of Secret Keys ... 3-2

Figure 3-3 – Overview of AES_G3 function .. 3-3

Figure 3-4 – Example of Media Key Block Showing a Valid Order of Records.. 3-12

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page viii 4C Entity, LLC

This page is intentionally left blank.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page ix

List of Tables

Table 3-1 – Common Cryptographic Key Management Elements ... 3-1

Table 3-2 Elements of Device Key Set ... 3-2

Table 3-3 – Type and Version Record Format .. 3-6

Table 3-4 – Verify Media Key Record Format .. 3-7

Table 3-6 – Explicit Subset-Difference Record Format .. 3-8

Table 3-7 – Subset-Difference Index Record Format.. 3-9

Table 3-8 – Media Key Data Record Format.. 3-10

Table 3-12 – End of Media Key Block Record Format ... 3-11

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page x 4C Entity, LLC

This page is intentionally left blank.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page 1-1

Chapter 1
Introduction

1. Introduction

1.1 Purpose and Scope

The Content Protection for eXtended Media Specification (CPXM) defines a renewable method for protecting

content recorded on a number of physical media types. This series of CPXM Specifications are different from

the CPRM Specifications. A main difference is the cipher algorithm and the use of a technology that

implements broadcast encryption and the associated Media Key Block (MKB). The AES cipher is used in

CPXM instead of the C2 cipher in CPRM. Therefore, the MKB and Device Key spaces are also different.

MKBs and Device Keys for CPRM cannot be used for CPXM. The specification is organized into several

“books”. This document, the Introduction and Common Cryptographic Elements book, provides a brief

overview of CPXM, and defines cryptographic procedures that are common among its different uses. Other

books provide additional details specific to using CPXM protection for different applications and media types.

Other books of the CPXM Specification available at or around the time of this publication are:

 SD Memory Card Book

Books covering other media types are expected to be available in the future (see Section 1.5 below). CPXM is

an integral part of an overall system for protecting content against unauthorized copying, known as the Content

Protection System Architecture (see the corresponding reference in Section 1.4).

The use of this specification and access to the intellectual property and cryptographic materials required to

implement it will be the subject of a license. A license authority referred to as the 4C Entity, LLC is

responsible for establishing and administering the content protection system based in part on this specification.

This revision of this document is for evaluation purpose only.

1.2 Overview

The CPXM technology is designed to meet the following criteria:

 It meets the content owners‟ requirements for robustness and system renewability.

 It is applicable for both audio and video content.

 It is equally suitable for implementation on PCs and CE devices.

 It is applicable to different media types.

The system is based on the following technical elements:

 Key management for interchangeable media

 Content encryption

 Media based renewability

Figure 1-1 shows a simplified illustrative example of how the system operates. The actual details of component

storage and cryptographic key management will vary with different types of SD Memory Cards and other

supported media, as well as with different applications, as described in the other books of this specification.

Step 1a. The 4C Entity, LLC provides secret device keys to the device manufacturer for inclusion into each

device produced.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 1-2 4C Entity, LLC

Step 1b. Media manufacturers place a Media Identifier and Media Key Block generated by the 4C Entity, LLC

on each piece of compliant media.

Step 2. When compliant media is placed within a compliant drive or player/recorder, a secret Media Key is

generated by the device using its secret keys and the Media Key Block stored on the media itself. The same

secret Media Key is generated regardless of which compliant device is used to access the media.

Step 3. Content stored on the media is encrypted/decrypted by a secret Title Key. The Title Key is encrypted

and stored on the media using a key derived from a one-way function of the Media Key and Media ID. The

copy control information (CCI) associated with the content is also encrypted by the Title Key. Both encrypted

Title Key and encrypted CCI are stored in Protected Area which requires to authenticate the device to access.

Again, actual details of key management can vary among different applications, as described in the other books

of this specification.

Figure 1-1 – CPXM Illustrative Example

1.3 Organization of this Document

This document is organized as follows:

 Chapter 1 provides an introduction and overview of CPXM.

 Chapter 2 describes common CPXM cryptographic functions based on the AES cipher algorithm.

 Chapter 3 describes a common CPXM cryptographic key management procedure, using a Media Key

Block.

User Data Area

Encrypted

Content

Protected Area

Encrypted

Kt and CCI

System Area

MKB

IDmedia

Data prerecorded by media

manufacturer
1b

Media Key Block

Media ID

Recorded data

Device generates Media Key from

Media Key Block and Device Keys

Device Keys given to device manufacturer

by 4C Entity, LLC

Encrypted Title Key and CCI using

the key derived from Media Key, Media ID

1a

2

3

Encrypted Content using Title Key

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page 1-3

1.4 References

This specification shall be used in conjunction with the following publications. When the publications are

superceded by an approved revision, the revision shall apply.

4C Entity, LLC, CPXM License Agreement (Unpublished)

4C Entity, LLC, Content Protection System Architecture White Paper, Version 0.81

National Institute of Standards and Technology (NIST), Secure Hash Standard, FIPS Publication 180-2, August

1, 2002.

National Institute of Standards and Technology (NIST), Recommendation for Random Number Generation

Using Deterministic Random Bit Generators (Revised), NIST Special Publication 800-90, March 2007.

National Institute of Standards and Technology (NIST), A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications, NIST Special Publication 800-22, with revisions dated,

May 15, 2001.

National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS

Publication 197, November 26, 2001.

D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Receivers. In Advances in

Cryptology - CRYPTO 2001.Springer-Verlag Inc. LNCS 2139, 2001, 41-62.

1.5 Future Directions

With its robust cryptography, key management, and renewability mechanisms, it is expected that CPXM will

develop and expand, through additions to this specification, to address content protection for additional media

types, application formats, and usage models.

1.6 Notation

1.6.1 Numerical Values

This specification uses three different representations for numerical values. Decimal numbers are represented

without any special notation. Binary numbers are represented as a string of binary (0, 1) digits followed by a

subscript 2 (e.g., 10102). Hexadecimal numbers are represented as a string of hexadecimal (0..9, A..F) digits

followed by a subscript 16 (e.g., 3C216).

1.6.2 Bit and Byte Ordering

Certain data values or parts of data values are interpreted as an array of bits. Unless explicitly noted otherwise,

bit positions within an n-bit data value are numbered such that the least significant bit is numbered 0 and the

most significant bit is numbered n-1.

Unless explicitly noted otherwise, big-endian ordering is used for multiple-byte values, meaning that byte 0 is

the most significant byte.

1.6.3 Operations

The following notation will be used for bitwise and arithmetic operations:

[x]msb_z The most significant z bits of x.

[x]lsb_z The least significant z bits of x.

[x]y:z The inclusive range of bits between bit y and bit z in x.

~x Bit-wise inversion of x.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 1-4 4C Entity, LLC

x || y Ordered concatenation of x and y.

x y Bit-wise Exclusive-OR (XOR) of two strings x and y.

x + y Modular addition of two strings x and y.

x y Multiplication of x and y.

x – y Subtraction of y from x.

x / y Division of x by y.

floor(x) Truncated x.

The following assignment and relational operators will be used:

= Assignment

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

1.7 Abbreviations and Acronyms

The following is an alphabetical list of abbreviations and acronyms used in this document:

4C 4 Companies (IBM, Intel, Panasonic, and Toshiba)

AES Advanced Encryption Standard

ATA AT Attachment

CBC Cipher Block Chaining

CCI Copy Control Information

CE Consumer Electronics

CPRM Content Protection for Recordable Media

CPXM Content Protection for eXtended Media

ECB Electronic Codebook

FIPS Federal Information Processing Standards

ID Identifier

LLC Limited Liability Company

lsb Least Significant Bit

MKB Media Key Block

msb Most Significant Bit

PC Personal Computer

SD Secure Digital

XOR Exclusive-OR

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page 2-1

Chapter 2
CPXM Common Cryptographic Functions

2. CPXM Common Cryptographic Functions

This chapter describes common cryptographic functions that are used by CPXM for various applications and

media types. The functions are described here in isolation; their specific uses as part of CPXM encryption, key

management, and renewability mechanisms are described elsewhere in this document, as well as in the other

books of this specification.

2.1 AES Block Cipher Algorithm

Common cryptographic functions used for CPXM are based on the AES block cipher. A description of the

AES block cipher algorithm is provided in the FIPS Publication 197, as referred to in Section 1.4. That

specification describes two basic operational modes of the AES cipher: Electronic Codebook (ECB) mode and

Cipher Block Chaining (CBC) mode. The remainder of this section describes notation that will be used in this

document and in other books of this specification to refer to those two modes of operation.

2.1.1 AES Block Cipher in Electronic Codebook (ECB) Mode

In this document and in other books of this specification, encryption with the AES cipher in Electronic

Codebook (ECB) mode is represented by the function

 AES_E(k, d)

 where k is a 128-bit key, d is a 128-bit value to be encrypted, and AES_E returns the 128-bit result.

Decryption using the AES cipher in ECB mode is represented by the function

 AES_D(k, d)

 where k is a 128-bit key, d is a 128-bit value to be decrypted, and AES_D returns the 128-bit result.

2.1.2 AES Block Cipher in Cipher Block Chaining (CBC) Mode

The AES cipher is used in Cipher Block Chaining (CBC) mode for encryption and decryption of content

protected by CPXM. In this document and in other books of this specification, encryption with the AES cipher

in CBC mode is represented by the function

 AES_ECBC(k, d)

where k is a 128-bit key, d is a frame of data to be encrypted, and AES_ECBC returns the encrypted

frame.

Decryption using the AES cipher in CBC mode is represented by the function

 AES_DCBC(k, d)

where k is a 128-bit key, d is a frame of data to be decrypted, and AES_DCBC returns the decrypted

frame.

The size of the frame of data to be encrypted or decrypted (i.e. how often a new CBC cipher chain is started)

depends on the particular application format, and is defined for each in the corresponding books of this

specification. The initialization vector used at the beginning of a CBC encryption or decryption chain is a

constant and given by the 4C Entity, LLC as Confidential Information, as defined in the CPXM License

Agreement.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 2-2 4C Entity, LLC

2.2 AES Hash Function

CPXM uses a hashing procedure based on the AES encryption algorithm. This procedure is called the AES

Hash Function, and is represented by the function

 AES_H(d)

 where d is input data of arbitrary length, and AES_H returns the 128-bit result.

Prior to hashing, the data to be hashed (d) is padded using the standard SHA-1 method as described in the

following sentences. The message or data file is considered to be a bit string. The length of the message is the

number of bits in the message (the empty message has length 0). The purpose of message padding is to make

the total length of a padded message an integer multiple of 128 bits. The AES hash sequentially processes

blocks of 128 bits when computing the message digest. The following specifies how this padding shall be

performed. As a summary, a "1" followed by m "0"s followed by a 64-bit integer are appended to the end of the

message to produce a padded message of length 128 n. The 64-bit integer is the length of the original

message in bits. The length of padding is at least 65 bits ("1" || the 64-bit integer) and at most 192 bits ("1" ||

127 "0"s || the 64-bit integer.) By way of example, a 56-bit message would be padded with 72 bits as follows:

80000000000000003816. A 64-bit message would be padded with 192 bits as follows: 80…04016. A 128-bit

message would be padded with 128 bits as follows: 80…08016.

The padded data d‟ is divided into n 128-bit blocks, represented as d1‟ ,d2‟ ,…dn‟, which are used in the hashing

procedure as shown in Figure 2-1.

Figure 2-1 – AES Hash Function

A 128-bit fixed initial value h0 is provided by the 4C Entity, LLC for media types and applications where the

AES Hash Function is used.

The following are calculated iteratively for i from 1 to n:

 hi = AES_D(di‟, hi-1) hi-1‟.

The value hn is the final result of the hash, i.e. AES_H(d) = hn.

AES_D

128
128

128

128

hi

di'

hi-1

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page 2-3

2.3 AES One-way Function

CPXM uses a cryptographic one-way function based on the AES encryption algorithm. This function is called

the AES One-way Function, and is represented by

 AES_G(d1, d2)

 where d1 is a 128-bit input value, d2 is a 128-bit input value, and AES_G returns the 128-bit result.

Figure 2-2 depicts the one-way function.

Figure 2-2 – AES One-way Function

The one-way function result is calculated as

 AES_G(d1, d2) = AES_D(d1, d2) d2.

AES_D

128
128

128

128

AEG_G(d1, d2)

d1

d2

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 2-4 4C Entity, LLC

2.4 Random Number Generators

This section describes a random number generator and a pseudo-random number generator, both of which are

based on the AES One-way Function. Unless explicitly noted otherwise, one or plural of the following

random/pseudo random number generators shall be used: (1) Pseudorandom number generator based on a

design described in either Section 2.4.1 or Section 2.4.2 and described below (2) Pseudorandom number

generators defined in NIST Special Publication 800-90 (see reference in Section 1.4) (3) Random or

pseudorandom number generator of equal or higher quality that passes the tests described in NIST Special

Publication 800-22 when using the default parameters and other recommendations provided therein (see

reference in Section 1.4).

2.4.1 AES Random Number Generator

Figure 2-3 shows the AES Random Number Generator, which is a random number generator based on the AES

One-way Function that uses a non-correlated input in every cycle.

Figure 2-3 – AES Random Number Generator

Manufacturers need to generate a unique value, s0, for each device or medium. During manufacture, the s0 is

loaded into the non-volatile seed register. Thereafter, 128-bit random numbers ri (i=0,1,…) are generated as

 ri = AES_G(ki, si),

 where ki = f(k, ei)

and si+1 = ri.

The function f(k, ei) returns the value k after its least significant bit is exclusive-ORed with ei.

The constant k is a 128-bit value generated individually for each device by a physically random process. This

may be taken from the random number provided for each device by the 4C Entity, LLC. The 1-bit value ei is

taken from a source of run-time entropy, such as the least significant bit of a free-running counter having a

frequency significantly higher than the random number sample rate.

Unless explicitly noted otherwise, a device shall treat its k value as Highly Confidential, as defined in the

CPXM License Agreement.

AES AES_G

128

Non-volatile
seed register

128

k

si

Initial value (s0) loaded during

manufacture

128

128

ri

ei

f f

128

ki

1

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

 4C Entity, LLC Page 2-5

2.4.2 AES Pseudo-random Number Generator

Figure 2-4 shows the AES Pseudo-random Number Generator, which is a pseudo-random number generator

based on the AES One-way Function that generates an output sequence with a period of length 2
128

.

Figure 2-4 – AES Pseudo-random Number Generator

Manufacturers need to generate a unique value, s0, for each device or medium. During manufacture, the s0 is

loaded into the non-volatile seed register. Thereafter, 128-bit random numbers ri (i=0, 1, …) are generated as

 ri = AES_G(k, si)

 where si+1 = [si + 1]lsb_128

The constant k is a 128-bit value generated individually for each device by a physically random process. This

may be taken from the random number provided for each device by the 4C Entity, LLC. Unless explicitly noted

otherwise, a device shall treat its k value as Highly Confidential, as defined in the CPXM License Agreement.

AES_G

128

non-volatile

seed register

128

k

si

Initial value (s0) loaded

during manufacture

128

128

ri

+ 1

128

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Confidential 4C Entity, LLC Page 3-1

Chapter 3
CPXM Common Cryptographic

Key Management

3. CPXM Common Cryptographic Key Management

This chapter describes an advanced cryptographic key management procedure, depicted in Figure 3-1, which

uses a Media Key Block, based on the subset-difference tree method, to provide system renewability in the form

of device and media revocation. The procedure is described here in isolation; its use as part of the overall

protection system is described elsewhere in this specification.

Figure 3-1 – Common CPXM Cryptographic Key Management Procedure

The 4C Entity, LLC licenses a Device Key Set which includes Device Keys (Kd_0,Kd_1,…,Kd_n-1) used to

decrypt one or more elements of a Media Key Block (MKB), in order to extract the secret Media Key (Km
0
) or

the Media Key Precursor(Km
-1

). The result which is calculated by Process MKB depends on the type of Device

Key used. Table 3-1 lists the elements involved in this process, along with their sizes.

Table 3-1 – Common Cryptographic Key Management Elements

Key or Variable Size

Device Keys (Kd_0, Kd_1,…, Kd_n-1) 128 bits each

Media Key Block (MKB) Variable, multiple of 4 bytes

Media Key (Km
0
) 128 bits

Media Key Precursor (Km
-1

) 128 bits

The remainder of this section describes this cryptographic key management procedure in detail.

Process_MKB MKB

Device Key Set

Media Key or Media Key Precursor

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 3-2 4C Entity, LLC

3.1 Device Keys

Each compliant device or medium is given a Device Key Set when manufactured. A Device Key Set consists of

a Device Node, a set of Device Keys (Kd) and the UV Descriptor (UV) associated with each Device Key,

{Device Node, {Kd_0, UV0}, {Kd_1, UV1}, ..., {Kd_n-1, UVn-1}}. Table 3-2 shows these elements and the size.

There are two types of Device Keys which are called Host Device Key and Media Device Key. A Host Device

Key is given to a host device and a Media Device Key is given to a medium. The actual number of keys may be

different in different media types. These Device Keys, referred to as Kd_i (i=0, 1,…, n-1), are provided by 4C

Entity, LLC., and are used by the device to process the MKB. The Host Device Key set produces the Media

Key Precursor (Km
-1

), which can then be used to calculate the Media Key (Km
0
), whereas the Media Device Key

set produces the Media Key (Km
0
). The set of Host Device Keys shall either be unique per device, or shared by

multiple devices, however the set of Media Device Keys shall be unique per medium. The CPXM License

Agreement describes details and requirements associated with these alternatives. A device and medium shall

treat its Device Keys as Highly Confidential, as defined in the CPXM License Agreement.

Table 3-2 Elements of Device Key Set

Elements Size

Device Keys (Kd_0, Kd_1,…, Kd_n-1) 128 bits each

UV Descriptor (UV0, UV1, ..., UVn-1) 48 bits each

Device Node 40 bits

3.2 Media Key Block (MKB)

The Media Key Block (MKB) enables system renewability. The MKB is generated by 4C Entity, LLC. All

compliant Host Devices using their set of secret Host Device Keys calculate the same Km
-1

 and Km
0
 when using

the same MKB. All compliant Media Device using their set of secret Media Device Keys calculate the same

Km
0
 as Host Devices will from the same MKB. If a set of Device Keys is compromised in a way that threatens

the integrity of the system, an updated MKB can be released that causes a Host Device or Media Device with

the compromised set of Device Keys to be unable to calculate the correct Km
-1/

Km
0
or Km

0
 respectively. In this

way, the compromised Device Keys are “revoked” by the new MKB. Compliant devices shall be able to locate

the MKB on media as defined in the format specific books of this specification. Figure 3-2 shows the

calculation of these secret keys.

Figure 3-2 – Calculation of Secret Keys

Media Key

MKB Process

Media Device Key Set

MKB Process

Host Device Key Set

Media Key Block

Media Key Precursor

AES_G

Key Conversion Data

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Confidential 4C Entity, LLC Page 3-3

3.2.1 Subset-Difference Tree Related Definitions

This section describes defined terms mentioned in the tree calculations.

3.2.2 Calculation of Subsidiary Device Keys and Processing Keys

For the purpose of processing an MKB to calculate Km
0
 or Km

-1
, Device Keys are used to calculate subsidiary

Device Keys and Processing Keys using the AES_G3 function. The AES_G3 is the AES Cipher based one way

calculation and outputs 384 bits. From a Device Key or subsidiary Device Key, AES_G3 produces the

subsidiary Device Key for the left child of the current node, the Processing Key and the subsidiary Device Key

for the right child of the current node. By using the AES_G3 function, the device calculates all subsidiary

Device Keys that it needs from the few Device Keys that it stores at manufacturing time. Figure 3-3 depicts

overview of AES_G3 function

Figure 3-3 – Overview of AES_G3 function

3.2.3 Storing Device Keys

Each Host Device or Media Device is given its Device Keys and a 39-bit number d called the Device Number.

For each Device Key, there is an associated number denoted the path number, and the “u” bit mask, mu, and the

“v” bit mask, mv. The path number denotes the position in the tree associated with the Device Key. This path

number defines a path from the root to that node in the tree as follows: starting with the most significant bit, a

„0‟ value indicates the path takes the „left‟ branch of the tree and a „1‟ value indicates the path takes the „right‟

side. These masks are always a single sequence of 1-bits followed by a single sequence of 0-bits. The bit masks

indicate “don‟t care” bits in the path number; if a bit is zero, that corresponding bit in the uv number is “don‟t

care”; i.e., the path ends at this point. The device number, path number, and masks denote nodes within a binary

tree, where u is an ancestor of v. These masks represent the depth of the respective nodes, u and v, from the

root of the tree. The deeper the position of a node in the tree, the shorter the sequence of 0-bits in the mask

associated to that node. As a result, the mu mask always has more 0 bits than the mv mask. The subset-difference

is the sub-tree rooted at node u minus the sub-tree rooted at node v.

For conciseness, the path number and the “v” mask are encoded in a single 40-bit number, referred to as the uv

number. The mask for v is given by the first lower-order 1-bit in the uv number. That bit and all lower-order 0-

bits, are zero bits in the “v” mask. The following C code fragment illustrates one way to calculate the v mask

from the uv value:

128

AES_G3

128

Device Key or
subsidiary Device Key

Subsidiary Device Key for the
left child of the input node

128

Processing Key
Subsidiary Device Key for the
right child of the input node

128

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 3-4 4C Entity, LLC

long long v_mask = 0xFFFFFFFFFF;

while ((uv & ~v_mask) == 0) v_mask <<= 1;

By the same token, CPXM distinguishes between Device Numbers and Device Node Numbers, and uses the

latter in the key order format. A Device Node Number is the uv number of the Device Number. Since Device

Numbers always correspond to leaves in the tree, the Device Node Numbers always have their low-order bit on,

and their mask is always FFFFFFFFFE16. In other words, the Device Node Number is the Device Number

shifted left by 1, with the low-order bit set. For example, when a 39-bit Device Number is

0010010001101000101011001111000100110102 (123456789A16), the Device Node Number is

00100100011010001010110011110001001101012 (2468ACF13516).

3.2.4 Calculation of Media Key and Media Key Precursor

The Media Key Block includes two major parts: the subset-difference identification part, and the key data part.

For each subset-difference included in the identification part, there are 16 bytes of key data in the key data part.

The key data is corresponds one-for-one with the identified subset-differences. For example, the 23
rd

 subset-

difference is associated with the 23
rd

 section of the Media Key Data field; that is, it begins at offset (23-1) 16

from the start of the Media Key Data field of the Media Key Data Record.

Subset-differences are encoded as uv numbers and two masks, a “u” mask denoted mu and a “v” mask denoted

mv. A subset-difference applies to a device if the u node is on a path from the device‟s node to the root of the

tree, but the v node is not. This is simple to calculate using the uv number, the appropriate mask, and the

Device Node Number d. By definition, a device “d” is on a path to a “uv” number with mask “m” if and only

if:

 (d & m) == (uv & m)

Thus, a subset-difference applies if and only if:

 ((d & mu) == (uv & mu)) and ((d & mv) != (uv & mv))

The first part of the “and” statement tests that the device‟s node is in the subset, i.e. the device‟s node is in the

sub-tree rooted in u. The second part of the „and‟ statement tests that the device‟s node is not in the sub-tree

rooted in v. Hence, the full statement tests if the device‟s node is in the subset difference “u minus v”. This

subset difference uv contains the nodes in the sub-tree rooted at u that do not belong to the sub-tree rooted at v.

The device searches through the Explicit Subset-Difference Record fields, looking at the identified subset-

differences, until it finds the one that applies to it. At that point the device either has the Device Key, or is able

to derive the subsidiary Device Key, associated with that subset-difference. It finds the appropriate stored

Device Key as follows: assuming the Explicit Subset-Difference Record value is uv, mu, and mv, and the stored

Device Key has uv‟, m‟u, and m‟v, the appropriate Device Key is the one that meets the following condition:

 (mu == m‟u) and ((uv & m‟v) == (uv‟ & m‟v))

If m‟v equals m v, the starting Device Key is the final Device Key, and is used directly to derive the Processing

Key, as described above. Usually, however, the starting Device Key‟s node is further up in the tree, and the

actual Device Key will have to be derived. The device does that as follows:

1. Initialization. m = the stored v mask m‟v. D = the starting Device Key.

2. Use AES_G3 on D, as described above, to determine a left subsidiary Device Key, a Processing Key, and

a right subsidiary Device Key.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Confidential 4C Entity, LLC Page 3-5

3. Look at the most significant zero bit in m. If the corresponding bit in the incoming uv number is 0, D =

left subsidiary Device Key from step 2. Otherwise, D = right subsidiary Device Key from step 2.

4. Iteration. Arithmetic shift m right one bit. If it does not equal the incoming v mask mv, repeat starting at

step 2.

Once the device has the correct Device Key D, it calculates a Processing Key K using AES_G3 as described

above.

Media Devices calculate the 128 bit Media Key (Km
0
) using that Processing Key and the appropriate 16 bytes of

encrypted key data C found in the appropriate Media Key Data Record in the MKB and the AES hash of the 16

bytes of the Type and Version Record of the MKB described in Section 3.2.5.2 and the 40-bit uv number as

follows:

Km
0
 = AES_F0(Processing Key, C, Type and Version Record, uv number)

where AES_F0 is the AES Cipher based calculation and exact notation of this function is provided by

4C Entity, LLC.

Host Devices calculate the Media Key Km
0
by first calculating the Media Key Precursor Km

-1
.using the same

calculation above, which yields the Km
-1

 instead of Km
0
 as follows:

 Km
-1

 = AES_F1(Processing Key, C, Type and Version Record, uv number)

where AES_F1 is the AES Cipher based calculation and exact notation of this function is provided by

4C Entity, LLC.

Host Devices then calculate the Media Key Km
0
and a constant Key Conversion Data (KCD) using the AES_G

one-way function as follows:

Km
0
 = AES_G(Km

-1
, KCD)

where KCD is a constant value provided by 4C Entity, LLC.

Note that using the calculations above, Host and Media Devices both derive the same Media Key Km
0
 from the

same MKB using their respective Device Key Set.

A device may discover, while processing the Media Key Block, that none of the subset-differences identified in

the block apply to it. In that case, the device shall conclude that it is revoked. Device behavior in this situation

is implementation defined. As an example, a device could exhibit a special diagnostic code, as information to a

service technician.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 3-6 4C Entity, LLC

3.2.5 Media Key Block Format

A Media Key Block is formatted as a sequence of contiguous Records. Each Record begins with a one-byte

Record Type field, followed by a three-byte Record Length field. The Record Type field value indicates the

type of the Record, and the Record Length field value indicates the number of bytes in the Record, including the

Record Type and the Record Length fields themselves. Record lengths are always multiples of 4 bytes.

Using its Device Keys, Host Devices calculate Km
-1

 and Km
0
, while Media Devices calculate Km

0
 by processing

Records of the MKB one-by-one, in order, from first to last. The device shall not make any assumptions about

the length of Records, and shall instead use the Record Length field value to go from one Record to the next. If

a device encounters a Record with a Record Type field value it does not recognize, that is not an error; it shall

ignore that Record and skip to the next. Likewise, if a Record Length indicates a record is longer than the

device expects, that is also not an error; it shall ignore the additional record data.

The following subsections describe the currently defined Record types, and how a device processes each. All

multi-byte integers, including the length field, are “Big Endian”; in other words, the most significant byte

comes first in the record.

A properly formatted MKB shall have exactly one Verify Media Key Record, one Type and Version Record, one

Explicit Subset-Difference Record, one Subset-Difference Index Record, one Media Key Data Record, and one

End of Media Key Block Record. If an MKB contains duplicate records of any of these record types, or the

MKB is otherwise improperly formatted, the device behavior shall be manufacturer specific. If an MKB is

missing any of these record types, the device shall not process the MKB.

3.2.5.1 Type and Version Record

Table 3-3 – Type and Version Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 1016

1

Record Length: 00001016 2

3

4

MKBType: 0030100316
5

6

7

8

Version Number
9

10

11

12 Reserved

13 Reserved

14
Application ID

15

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Confidential 4C Entity, LLC Page 3-7

A properly formatted Media Key Block shall have exactly one Type and Version Record as its first record.

Recording devices shall use the Version Number in this record to determine if a new Media Key Block is, in

fact, more recent than the Media Key Block that is currently on the media. The Version Number is a 32-bit

unsigned integer. Each time the 4C Entity, LLC changes the revocation, it increments the version number and

inserts the new value in subsequent Media Key Blocks. Thus, larger values indicate more recent Media Key

Blocks. The Version Numbers begin at 1; 0 is a special value used for test Media Key Blocks.

A 2-byte Application ID indicates which application uses the MKB.

For CPXM applications, the MKBType field is set to 0030100316.

3.2.5.2 Verify Media Key Record

Table 3-4 – Verify Media Key Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 8116

1

Record Length: 00001416 2

3

4

Verification Data (Dv) …

19

A properly formatted MKB shall have exactly one Verify Media Key Record. It shall precede corresponding

records which are the Explicit Subset Difference Record, the Subset Difference Index Record, and the Media

Key Data Record, although it may not immediately precede them. Bytes 4 through 19 of the Record contain the

ciphertext value

 Dv = AES_E (Km
0
, 0123456789ABCDEF16 || XXXXXXXXXXXXXXXX16)

where XXXXXXXXXXXXXXXX16 is an arbitrary 8-byte value, and Km
0
 is the correct Media Key

value.

The presence of the Verify Media Key Record in an MKB is mandatory. The device may use the Verify Media

Key Record to verify the correctness of a given MKB, or of its processing of it. The device shall verify the

correctness of the MKB by observing the following condition:

 [AES_D(Km
0
, Dv)]msb_64 == 0123456789ABCDEF16

 where Km
0
 is the Media Key.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 3-8 4C Entity, LLC

3.2.5.3 Explicit Subset-Difference Record

Table 3-5 – Explicit Subset-Difference Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0416

1

Record Length 2

3

4 102 U Mask (0)

5

UV Number (0) …

9

10 102 U Mask (1)

11

UV Number (1) ...

15

16

.

.

.

.

.

.

Length-1

In this record, each subset-difference is encoded with 6 bytes called the UV Descriptor. The first 2-bits shall be

set to 102. The mask for u is given by the least significant 6 bits of the first byte. The value of these 6 bits is the

number of contiguous low-order bits in the mask which are set to zero. For example, the value 0116 denotes a

mask of FFFFFFFFFE16; value 0A16 denotes a mask of FFFFFFFC0016.

The last 5 bytes are the uv number, most significant byte first. (See section 3.2.3 for a definition of the uv

number.)

If a device encounters an entry whose high-order two bits are not set to 102, without finding an applicable subset,

it may conclude it is revoked. In other words, if the first byte is not of the form 10xxxxxxxx2, this marks the end

of the list. The device‟s action in this case is manufacturer-specific. However, it is common for proactively-

renewed host devices to find themselves revoked if they are at a down-level version. In this case, the update to

the new version should be as seamless as possible for the consumer.

The length of this record is always a multiple of 4 bytes. Thus, there may be unused bytes at the end of the

record.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Confidential 4C Entity, LLC Page 3-9

3.2.5.4 Subset-Difference Index Record

Table 3-6 – Subset-Difference Index Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0716

1

Record Length 2

3

4

Span (number of devices) …

8

9

Data Offset (0) 10

11

12

Data Offset (1) 13

14

15

Data Offset (2) – Data Offset (N)
…

Length-1

This is a speed-up record which may be ignored by devices not wishing to take advantage of it. It is a lookup

table which allows devices to quickly find their subset-difference in the Explicit Subset-Difference Record,

without processing the entire record. This Subset-Difference Index Record is always present, and always

precedes the Explicit Subset-Difference Record in the MKB, although it does not necessarily immediately

precede it. Furthermore, the Subset-Difference Index Record is guaranteed to be within the first one megabyte of

the Media Key Block. For the purpose of designing for performance, a one megabyte buffer is sufficient to

process the MKB; however, it is the manufacturer's choice how large a buffer is devoted to that purpose.

(Informatively, it is always possible to treat the Media Key Block as a stream using a relatively small buffer.)

Nonetheless, devices shall always be capable of processing Media Key Blocks exceeding one megabyte in size.

This record contains a Span, the number of devices per index offset, and a number of 3-byte Data Offsets. These

Data Offsets refer to the byte offset within the following Explicit Subset-Difference Record, with 0 being the

start of the record. Devices whose device number is between 0 and Span-1 shall begin processing the Explicit

Subset-Difference Record at Data Offset (0). Devices whose number is between Span and 2 (Span-1), shall

begin processing the Explicit Subset-Difference Record at Data Offset (1), and so on. Equivalently, if a device‟s

number is d, the corresponding Data Offset is Data Offset floor(d/Span) and it finds its Data Offset within the

Explicit Subset-Difference Record at offset 3 floor(d / Span) + 9 in this record. For example, when d is

1270D89F2B16 and Span is 010000000016, the Data Offset (18) starting at offset 4510 is used.

Note that a device‟s number d is its node number shifted right by 1, because the low-order bit of the node

number is always 1 to denote a leaf node.

The length of this record is always a multiple of 4 bytes. Thus, there may be unused bytes at the end of the

record.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 3-10 4C Entity, LLC

3.2.5.5 Media Key Data Record

Table 3-7 – Media Key Data Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0516

1

Record Length 2

3

4

Media Key Data (0) …

19

20

Media Key Data (1) ...

35

36

.

.

.

.

.

.

Length-1

This record gives the associated Media Key Data for the subset-differences identified in the Explicit Subset-

Difference Record. Each subset-difference has its associated 16 bytes in this record, in the same order it is

encountered in the Explicit Subset-Difference Record. This 16-byte is the ciphertext value C in the Media Key

calculation in Section 3.2.4.

The Explicit Subset-Difference Record always precedes this record, although it may not immediately precede it.

The length of this record is always a multiple of 4 bytes.

Notice that adding a new cover sub-tree to the MKB or new encryption requires 22 bytes: 6 bytes for its “uv”

data and 16 bytes for the Media Key Data. On average there are 1.28 encryptions per revocation.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Confidential 4C Entity, LLC Page 3-11

3.2.5.6 End of Media Key Block Record

Table 3-8 – End of Media Key Block Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0216

1

Record Length: 00001416 2

3

4

Check Data for MKB

...

19

A properly formatted MKB shall contain an End of Media Key Block Record. When a device encounters this

Record it stops processing the MKB, using whatever Km
0
 value it has calculated up to that point as the final Km

0

for that MKB (pending possible checks for correctness of the key, as described previously).

This record includes 16 bytes of the Check Data for MKB field to verify the integrity of the MKB. The Check

Data for MKB field is calculated by following formula.

 Check Data for MKB = AES_H(MKB data up to but not including the End of MKB record)

Note that MKB data shall include all records including those with Record Type fields that the device might not

recognize.

The length of this record is always 20 bytes.

CPXM Specification: Introduction and Common Cryptographic Elements, Revision 0.85 Preliminary

NOT FOR LICENSE OR IMPLEMENTATION AT THIS TIME

Page 3-12 4C Entity, LLC

Figure 3-4 shows an example MKB with an example record ordering. However, it is possible to construct many

other valid sequences. Notice that for every “uv” related field there is a Media Key Data field and for the record

types shown in the left, there is only one record.

Figure 3-4 – Example of Media Key Block Showing a Valid Order of Records

3.2.6 Read/Write Media Key Blocks

Media Key Blocks can be updated to later versions on Recordable media. Additional details on this process can

be found in the Media book portion of this specification.

Type and Version

Verify Media Key

Subset Difference Index

Media Key Data

End of Media Key Block

Length

UV Descriptor (0)

Type

UV Descriptor (1)

....

UV Descriptor (n)

Length

Media Key Data (0)

Type

Media Key Data (1)

....

Media Key Data (n)

UV-subtree Data

Explicit Subset Difference

Media Key Data

